
The effect of radiation on the
laminar natural convection

induced by a line heat source
Mohammad B. Ayani and Javad A. Esfahani

Department of Mechanical Engineering, Ferdowsi University of Mashhad,
Mashhad, Iran, and

Antonio C.M. Sousa
Department of Mechanical Engineering, University of New Brunswick,

Fredericton, Canada

Abstract

Purpose – To show the effect of radiation from the heat source and the variation of fluid properties
on the laminar natural convection induced by a line heat source.

Design/methodology/approach – The governing equations – Navier-Stokes and energy equation
are discretized in a staggered grid by a control volume approach, and they are solved using a
segregated technique. The equations for the fluid and solid (line heat source) phases are solved
simultaneously. The three sides of the computational domain are open boundary. Some of the physical
and thermo-physical properties of the fluid (air) such as density, thermal conductivity and viscosity
were considered to vary with temperature.

Findings – The present predictions are compared with those using the Boussinesq approximation,
with the results for the boundary layer equations, and with the experimental results. The present
predictions reveal considerable departure from the Boussinesq-based solution and from the boundary
layer results. This study also shows the radiation exchange between the heat source and surrounding
has major effect in the results. Thus, the departure between the experimental and analytical results can
be explained by the effect of radiation exchange.

Research limitations/implications – In this work, just studied steady-state laminar thermal
plume with the effects of radiation from heat source and the variation of air properties with
temperature while it is propose to extend this work to transient and/or turbulent flow.

Originality/value – The effect of radiation from a line heat source on the flow filed around the
source and offers enhancement of design to thermal engineers.

Keywords Numerical analysis, Convection, Heat transfer, Fluids

Paper type Research paper

Nomenclature
cp ¼ specific heat
f ¼ dimensionless stream function
g ¼ gravitational acceleration
Gr ¼ Grashof number
h ¼ dimensionless temperature

H ¼ height of computational domain
k ¼ thermal conductivity
p ¼ pressure
Pr ¼ Prandtl number
q ·

gen ¼ heat generation

The current issue and full text archive of this journal is available at

www.emeraldinsight.com/0961-5539.htm

This work was supported by the Natural Sciences and Engineering Research Council of Canada
through the Discovery Grant 1398-02 (ACMS). The Fellowship received by M.B. Ayani from the
Government of Iran is also gratefully acknowledged.

HFF
16,1

28

Received August 2004
Revised March 2005
Accepted April 2005

International Journal of Numerical
Methods for Heat & Fluid Flow
Vol. 16 No. 1, 2006
pp. 28-45
q Emerald Group Publishing Limited
0961-5539
DOI 10.1108/09615530610636946



qrad ¼ radiation exchange
Q ¼ rate of heat transfer
T ¼ temperature
u ¼ velocity component in the x direction
v ¼ velocity component in the y direction
~V ¼ velocity vector
x ¼ coordinate along vertical direction
X ¼ body force in the x direction
y ¼ coordinate along horizontal direction
W ¼ width of computational domain

Greek symbols
b ¼ thermal expansion coefficient
1 ¼ emissivity
m ¼ dynamic viscosity

n ¼ kinematics viscosity
r ¼ density
s ¼ normal stress
s ¼ Stefan-Boltzmann constant
t ¼ shear stress
j ¼ similarity variable
c ¼ stream function

Subscripts
0 ¼ centerline
f ¼ fluid phase
s ¼ solid phase
con ¼ convection
tot ¼ total
1 ¼ ambient

1. Introduction
Natural convection induced by heat sources in an infinite fluid space is relevant in
many engineering applications, and, in particular, laminar natural convection
generated by horizontal line heat sources, and also from heated circular cylinders, and
it has been extensively investigated analytically, numerically and experimentally.
Notwithstanding, a few questions still remain unanswered, and this work addresses
the validity of the boundary layer-type equations, and the factors affecting the
accuracy of the numerical solutions, including the Boussinesq approximation, variable
properties, and radiation exchange.

Zeldovich (1937) in his pioneering work described the natural convection plumes
arising from a point and from a horizontal line source of heat. The treatment used does
not allow a velocity component normal to the symmetry plane of plume. Fujii (1963)
solved the two-dimensional boundary layer equations for Pr of 0.01, 0.7, 2 and 10 by
using a similarity approach, which reduces the set of four partial differential equations
into two ordinary differential equations. It should be mentioned that many
experimental papers use Fujii’s paper for comparison and validity assessment.
Gebhart et al. (1970) redefined some of the variables used by Fujii, and simplified the
flow governing equation in the boundary layer region. For instance, the Grashof
number was defined based on the difference between the centerline temperature of the
plume and the ambient temperature – Fujii had defined it based on the total heat
transfer to the plume. Jaluria and Gebhart (1977) studied laminar natural convection
flow arising from a steady line thermal source, which is positioned at the leading edge
of a vertical adiabatic surface. The two-dimensional boundary layer flow equations
were reduced to self-similarity equations, and they were solved numerically. Lin et al.
(1996) examined the inclined wall plumes that arise from a line thermal source
embedded at the leading edge of an adiabatic plate with arbitrary tilt angle. They
carried out both experiments, and numerical analyses based on the self-similarity
equations.

The laminar plume rising above a long electrically heated wire of small diameter
was studied experimentally by Brodowicz and Kierkus (1966). They measured the
velocity and temperature distribution in air above the wire with a length to diameter
ratio (L/D) of 3,330. Their results only show a fair agreement with the results produced
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using the boundary layer theory (Fujii, 1963; Gebhart et al. 1970). Forstrom and
Sparrow (1967) use a thermocouple to measure the temperature distribution in air at
various heat inputs and heights above a wire source. Also, Schorr and Gebhart (1970)
measured the temperature distribution in a plume above a wire, which is submerged in
light silicon oil. All experimental results consistently present a lower value for the
centerline temperature of the plume than that predicted by the similarity solutions, as
discussed by Gebhart et al. (1988). Linan and Kurdymov (1998) studied numerically the
laminar free convection induced by a line heat source at small Grashof numbers, using
the Boussinesq equations, in stream function-vorticity (c-v) variables.

A few numerical studies were conducted to analyse the plume arising above heated
horizontal circular cylinders. Kuehn and Goldstein (1980) studied the laminar natural
convection heat transfer from a horizontal isothermal cylinder by solving the
Navier-Stokes and energy equations in (c-v) form. Shin and Chang (1989) studied the
transient natural convection from a horizontal circular cylinder subjected to a sudden
temperature change. They solved numerically the (c-v) form of the Navier-Stokes and
energy equations. An interesting finding of this study was an overshoot in the heat
transfer coefficient, which seemed to be associated with the conduction-convection
transition, and its magnitude was influenced by the Pr and Ra numbers. Wang et al.
(1991) studied the transient laminar natural convection from horizontal cylinders, and
they used the c-v equations. Esfahani and Sousa (1999) in studies addressed to
ignition by radiation used a primitive variable segregated numerical method based on
Patankar (1980) to analyse the laminar thermal plume up to ignition threshold. Their
predictions for the ignition delay are in good agreement with published experimental
data.

In the above-mentioned analytical and numerical studies except Esfahani and Sousa
(1999), the radiation exchange between the heat source and surrounding is ignored;
constant values for the viscosity and thermal conductivity were used, along with the
Boussinesq approximation for the estimation of the body force in the momentum
equations. Also in these studies, with exception of Esfahani and Sousa (1999), the
equations for self-similarity, or the c-v and energy equation were solved, while in this
study, the primitive variable, steady state Navier-Stokes and energy equations with the
effect of radiation exchange between heat source and surrounding are solved for the
fluid and solid (line heat source) phases, simultaneously by a segregated numerical
method Patankar (1980). The convective-diffusive linkage in this study, uses the
power-law scheme Patankar (1980). The governing equations were discretized for a
non-uniform staggered grid and the physical and thermo-physical properties of fluid
such as density, thermal conductivity and viscosity were considered to be dependent
upon the temperature.

2. Mathematical formulation
2.1 Governing equations
Laminar natural convection flow from a horizontal line heat source, assuming the
end-effects of the source are negligible, is governed by the continuity equation,
the two-dimensional Navier-Stokes equations and the energy equation. Based on the
physical configuration shown in Figure 1, the governing equations in the Cartesian
coordinate system take the following form:
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Continuity equation

7 · ðr ~VÞ ¼ 0 ð1Þ

where

~V ¼ uîþ vĵ ð2Þ

Momentum in x direction

›ðru 2Þ

›x
þ

›ðruvÞ

›y
¼ X 2

›p

›x
þ

›sx

›x
þ

›tyx

›y

� �
ð3Þ

Momentum in y direction

›ðruvÞ

›x
þ

›ðrv 2Þ

›y
¼ 2

›p

›y
þ

›txy

›x
þ

›sy

›y

� �
ð4Þ

where

sx ¼ 2
2

3
m7 · ~Vþ 2m

›u

›x
ð5Þ

sy ¼ 2
2

3
m7 · ~Vþ 2m

›v

›y
ð6Þ

Figure 1.
Schematic of the

computational domain and
the Cartesian coordinate

system
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txy ¼ tyx ¼ m
›v

›x
þ

›u

›y

� �
ð7Þ

X in equation (3) is the body force per unit volume in the x direction.
Energy equation

›ðruTÞ

›x
þ

›ðrvTÞ

›y
¼

1

cp
7 · ðk7TÞ þ

q ·
gen

cp
ð8Þ

where q ·
gen is the rate of heat generation per volume in the solid phase.

The flow is assumed to be incompressible in what concerns the variation of density
with pressure, therefore, the variation of density of the fluid (air) with temperature can
be determined from the following relation:

rT ¼ r1T1 ð9Þ

and the variation of viscosity of air with temperature is determined from Sutherland’s
law (Anderson, 1991), as follow:

m ¼ 1:458 £ 1026 T 3=2

T þ 110:4 K

Ns

m 2

� �
ð10Þ

The variation of cp and Pr of air with temperature is nearly negligible and they can be
considered to have a constant value in the range of temperatures for which the
computations are carried out. Under this assumption the variation of the thermal
conductivity for air with temperature can be determined from:

Pr ¼
cpm

k
ð11Þ

This formulation for Pr establishes a direct relation between k and m. The values of m
and k in the temperature range of the present work, i.e. 273-373 K, were calculated from
equations 10 and 11. Comparison of these values with the tabulated properties of air
(Incropera and DeWitt, 2002) for this particular temperature range indicates a
maximum error around 1 percent.

2.2 Boundary conditions
The flow is symmetric about a vertical plane passing through the axis of the heat
source (Figure 1), therefore, only one half plane will be considered. The boundary
conditions for the symmetry plane ( y ¼ 0) are as follows:

v ¼ 0 and
›u

›y
¼

›T

›y
¼ 0 ð12Þ

The other boundaries are located relatively far away from the heat source, and the
pressure is assumed to have a constant value. In this study, the relative pressure is
taken as zero. The tangential velocity component at the boundaries is determined by
solving the respective momentum equation in the domain, while the normal velocity
component towards the boundary can be obtained by using the extrapolation proposed
in Versteeg and Malalasekera (1995).
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Two types of conditions for the energy equation are used at the “far-field”
boundaries, namely:

T ¼ T1 ðinflowÞ ð13Þ

›T

›n
¼ 0 ðoutflowÞ ð14Þ

where n is the direction perpendicular to the surface of the boundaries.
The boundary condition for the energy equation at the interface of the solid and

fluid phases is as follows:

2ks
›Ts

›n
¼ 2kf

›T f

›n
þ 1s T4

s 2 T4
1

� �
ð15Þ

In this equation, it is assumed the fluid (air) is a non-participating media and n is the
direction perpendicular to the interface surface of the solid and fluid phases.

3. Numerical method
The solid heat source is represented in the two-dimensional domain by a square with a
side of 0.001 m, and its thermal conductivity is chosen equal to 0.2 W/m K. The center
of the square is placed coincident with the origin of the coordinate system as shown in
Figure 1.

The numerical method used to solve the momentum equations accounts for the
pressure-velocity coupling by iterating the solution, according to an algorithm based
on the simple approach Patankar (1980). In the discretization of non-linear convection
terms, as already stated, the power-law scheme is used, which, based on extensive
numerical tests, was found not to be particularly computationally demanding, and to
provide an extremely good representation of the exponential behavior of the
convection-diffusion equations.

The governing equations were discretized for non-uniform staggered grids, which
reach their smallest value at the fluid-solid interface. The discretized equations for fluid
and solid (line source) phases were solved simultaneously. The values of the
components velocity in the solid phase are set zero by choose of suitable source terms
in the discretized momentum equations (Patankar, 1980). Equation (15) was formulated
in the following form:

2ks
›Ts

›n
¼ 2kf

›T f

›n
þ hrðTs 2 T1Þ ð16Þ

where hr is defined as follows:

hr ¼ 1s T2
s þ T2

1

� �
ðTs þ T1Þ ð17Þ

A line-by-line TDMA iterative method (Patankar, 1980) was used to solve the
discretized governing (algebraic) equations. For each iteration sweep, hr is calculated
using the values of Ts obtained in the previous iteration level. To avoid eventual
divergence of the iterative process, the under-relaxation factors of 0.5, 0.5, 0.8, and 0.8
for u, v, p and T, respectively, were selected based on numerical experiments.
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The discretized governing equations are solved for three different computational
domain sizes (0.15 £ 0.03 m, 0.15 £ 0.05 m, and 0.15 £ 0.07 m) which the maximum
Grashof number, based on the heat input rate, in all of tests is less than the critical
Grashof number to keep regime of flow to be laminar.

The convergence criterion, based on the maximum relative residual of the discretized
equations, is chosen as 0.01. The maximum relative residual of the discretized
equations is defined as the ratio between the maximum residual for every variable
in the computational domain in each iteration and the same value for the second
iteration.

4. Discussion of results
As a first step in the assessment of the accuracy of the predictions of the present
numerical model the results of the simplified steady-state governing equations
with constant value for all physical and thermo-physical properties of the fluid
(air) except density (Boussinesq approximation) were calculated, as shown in
Figures 2-4.

Figure 2 shows the current computational results for iso-j coordinates based on
the definitions of Fujii (a) and Gebhart et al. (b), in the computational domain for
Qtot ¼ 70 w=m: Fujii (1963) defined the Grashof number based on the total heat rate
from heat source of plume, where as Gebhart et al. (1970) defined the Grashof number
based on the temperature difference between the centerline (symmetry line) of the
plume and the ambient. Details of these definitions, including j, are presented in
the Appendix. The assumption of boundary layer flow (thin layer) for high values of j
seems to be more reasonable for the definition of Fujii (1963) than that presented by
Gebhart et al. (1970).

Figure 2.
Configuration of iso-j
contours based on:
(a) Fujii (1963);
(b) Gebhart et al. (1970)
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Figure 3.
Comparison of the current

computation with the
resuls of Fujii (1963) based

on the boundary layer
assumptions

Figure 4.
Comparison of the current

computation with the
results of Gebhart et al.

(1970) based on the
boundary layer

assumptions
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Figure 3 shows the numerical results for the steady-state Boussinesq equations, and
they compare well with the results of the similarity solution of Fujii (1963), for the
boundary layer equations, particularly within the thin layer, where the assumptions
made are valid. This is corroborated by comparing the results for the variables f, f 0, and
h. They are plotted for different heights from the center of heat source (x varies from 10 to
130 mm by 10 mm steps). The boundary layer assumption does not consider the
momentum equation in the y direction, hence the pressure gradient in this direction is
assumed to be equal to zero. In this work, however, the momentum equation in the
y direction was solved. This is the main difference between the boundary layer theory
and the current computational model. There is good agreement between the similarity
solution of Fujii (1963) and the present predictions except for f in the regions of
x , 30 mm and x . 110 mm. The region of x , 30 mm is very close to the heat source
(leading edge), and the boundary layer assumption is not satisfied. This may explain the
discrepancy in the results for the high end values of j, since in this region y is larger than
x (Figure 2). The solution of the momentum equation in the y direction, and the existence
of a pressure gradient in this direction may yield the observed discrepancies. These
reasons are also valid for the results in the region of x . 110 mm, however, the two most
common definitions of the Grashof number only affect the display of the results;
however, Fujii’s definition may be preferred, considering the slenderness of the
boundary layer.

Figure 4 reports on the present predictions along with the results of Gebhart et al.
(1970). The two sets are in good agreement with each other, however, the discrepancies
shown in Figure 3, are also present in a similar range of x and j. Taking into account
the two different definitions for Gr, j, f, f 0 and h (Appendix), the current numerical
predictions for the Boussinesq equations lend support to the validity of the
analytical-numerical (similarity) solutions. The comparison of the results (Figures 3
and 4) show that the solution of the y momentum, as expected, has no significant effect
on the results for small value of j, where the boundary layer assumption is valid.
For large values of j(j . 3), however, the assumption of zero gradient pressure is not
applicable, therefore, the y momentum equation cannot be neglected, as clearly shown
in Figures 3 and 4.

In addition, Figure 3 shows that the f curves in the region of 30 mm , x , 110 mm
for higher value of j are in better agreement with the present predictions than those
shown in Figure 4. Tentatively, this may indicate the formulation of Fujii (1963)
has broader applicability than that of Gebhart et al. (1970), particularly for higher
values of j.

The mesh convergence of the results was also carefully analysed. The effect of
width of computational domain and mesh size on the results is shown in Figure 5.
For this purpose, the dimensions of the computational domain were selected as
30 £ 150 mm2, 50 £ 150 mm2,and 70 £ 150 mm2, with meshes of 81 £ 193,
131 £ 193, and 181 £ 193, respectively. The height of the computational domain
(H) was chosen to be 150 mm, with the purpose of restricting the Grashof number at
that location, to a value below 108, which is the approximate value for the transition
from the laminar to the turbulent regime. The non-dimensional variables f, f 0 and h in
the region of 30 mm , x , 110 mm are independent of x (Figures 2 and 3), therefore,
only the results for x ¼ 90 mm are shown in Figure 5. The width of the computational
domain (W) affects the results for W , 50 mm, the data clearly show that for W , 50
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the pressure constant boundary condition imposes undue flow constraints, which are
apparent by the “narrowing” of the plume due to its restricted transversal diffusion.
For higher values of the width (W . 50 mm), the results are independent of the size
of W. This is important as the use of a non-uniform mesh yields different number of
meshes for each domain size. In what follows the effect of assumptions required by the
boundary layer theory (Appendix) are examined.

One of the assumptions made in the boundary layer theory is to take as zero the
second derivative of variables (u and T) in the vertical direction (x) (Gebhart et al.,
1988). The Boussinesq equations with zero second derivatives in the x direction were
solved numerically and the results are shown in Figure 6. Comparison of Figures 4 and
6 shows negligible effect of these terms, especially for low values of j, but in the region
of high value of j(j . 3), their effect on the results can be noticed. This observation
makes good physical sense in the region of high value of j (Figure 2), the order of
magnitude of the second derivative with respect to x has the same order of magnitude
of that with respect to y. Therefore, to neglect it is not warranted.

Another factor that may affect the results is the variation of physical and
thermo-physical properties of the fluid with the temperature. The variation of
temperature in this study is high (about 100 K), and an analysis based on work of Gray
and Giorgini (1976) indicates that it is not valid to make the Boussinesq approximation.
The effect of the variation of density with temperature (equation (9)) on the results at
two different heights (x ¼ 30 and 90 mm) based on the definitions of Fujii (1963) and of
Gebhart et al. (1970) are shown in Figures 7 and 8, respectively. For these cases, only
the variation of density with temperature was considered for the body force term, and
advective terms. The other properties m, cp, Pr and k, are assumed constant. Figures 7
and 8, as expected, show that the variation of density with temperature has a more

Figure 5.
The effects of

computational domain
and mesh size on the

results for a fixed value
of x(x ¼ 90 mm)
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Figure 6.
The effect of second
derivative of variables in
the governing equations
on the results

Figure 7.
The effect of
temperature-dependent
properties of the fluid
upon the predictions, and
their comparison against
the results of Fujii (1963)
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pronounced influence upon the results in the vicinity of the heat source (x ¼ 30 mm)
than in the far field region (x ¼ 90 mm). In the region close to the heat source, the
temperature of the fluid is much higher than the far field temperature, and well beyond
the range of applicability of the Boussinesq approximation. In another test case, it is
assumed the Boussinesq approximation is only partially satisfied, cp and Pr are
constant, but m and k vary with the temperature in accordance with equations (10) and
(11), respectively. The influences of these parameters upon the results are also shown
in Figures 7 and 8. The variation of the viscosity and thermal conductivity of the fluid
(air) with temperature has a far less pronounced effect than that caused by the
variation of density.

One of the possible reasons for the discrepancy between the analytical solutions and
the experimental results as mentioned in Gebhart et al. (1988), is the net radiation
transfer between the surface of the heat source (1 ¼ 1) and the surroundings. Figure 9
shows the effect of this factor on the results. It shows that if the variables f, f 0, and h are
to be normalized with respect to the total power of the heat source, the values of f and f 0

are then very different from those obtained with the similarity solution method.
However, if the variables are normalized with respect to the amount of heat, which is
transferred by convection (total heat minus radiation lost from the surface of the heat
source to the surroundings), the values of f and f 0 then coincide with the similarity
solution results. This means that the similarity solution only takes into consideration
the convection heat transfer.

Figure 8.
The effect of

temperature-dependent
properties of the fluid

upon the predictions, and
their comparison against

the results of
Gebhart et al. (1970)
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The overall combined effect of all assumptions embodied by the boundary layer
equations (Appendix) upon the results for the laminar steady-state thermal plume is
analysed by solving the steady-state “full” Navier-Stokes equations. The changes of
density, viscosity, and thermal conductivity were calculated from equations (9)-(11),
respectively. The present results for this case are shown in Figure 10. It shows that
there is no agreement between the present predictions and the similarity solutions,
even for the values of f 0 and h. The effect upon the predictions by each individual
assumption is small as compared to that when the assumptions are combined.

The distribution of the centerline temperature in the x direction is an important
variable characterizing the plume, as extensively discussed in the literature. Gebhart
et al. (1988) investigated the variation of the non-dimensional steady-state laminar
centerline temperature of the plume with respect to the Grashof number for different
experimental data. They compare the experimental data against the results of the
similarity solution of boundary layer equations. The non-dimensional centerline
temperature of plume is defined as:

T* ¼ ðTðx; 0Þ2 T1Þ4
ffiffiffi
2

p mcpI

Q
ð18Þ

where

I ¼

Z 1

21

f 0h dj ð19Þ

The integral of equation (19) depends only on the Prandtl number and it is equal to
1.245 for Pr ¼ 0.7 (Gebhart et al., 1988). The experimental results described by T * are

Figure 9.
The effect of radiation
from the heat source
(solid) upon the results
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about 15 percent lower than the boundary layer theory (Gebhart, 1973). The present
predictions for this quantity with radiation (1 ¼ 1) and without radiation (1 ¼ 0) are
compared in Figure 11 against the experimental results, and against the results derived
from the boundary layer theory. For all test cases, when the radiation from the
heat source is not considered, the agreement between the present predictions
and the similarity solutions is good. When radiation between the heat source and
the surroundings is taken into account, the predictions then move closer to the
experimental results. It should be mentioned that in this case, if the amount of heat by
convection is inserted in equation (18) instead of the total heat, the result will agree well
with the similarity solutions. Comparison between the experimental results (Brodowicz
and Kierkus, 1966; Forstrom and Sparrow, 1967; Schorr and Gebhart, 1970), and the
current predictions allows to conclude that one of the parameters that causes major
discrepancy between the experimental centerline temperature of plume and the
predicted values by the similarity solutions is the net radiation exchange between
the heat source and the surroundings. In Forstrom and Sparrow (1967), the heater was
covered with a thin layer of polished gold, however, it seems that even a small amount
of radiative exchange between the heat source and the surroundings may have an
important effect upon the centerline temperature of the plume.

5. Conclusion
In this study, the analysis of a two-dimensional laminar thermal plume induced by a
horizontal line heat source is conducted by numerical techniques associated with the
simple method. The computational results are presented for a range of Grashof
numbers and are for a variety of simplifying assumptions of the governing equations.

Figure 10.
Numerical results without

resorting to the
Boussinesq assumptions
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The Boussinesq equations show good agreement with two different similarity
solutions.

When the Boussinesq approximation is not made, it was verified that the variation
of the fluid density with the temperature in the advective terms in addition to the body
force term has a much larger effect upon the predictions than that induced by the
variation of thermal conductivity or viscosity with temperature.

The analysis indicates that a possible explanation for the discrepancy between the
experimental results and the similarity solutions is the exchange radiation between the
heat source and the surroundings. Moreover, the non-dimensional centerline
temperatures of the plume obtained through the similarity solutions, and normalized
using the convection heat transfer instead of total source heat output, are in good
agreement with the experimental values.
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Appendix
The main assumptions required by boundary layer theory for a laminar thermal plume are as
follows:

. the governing equations were simplified for a thin region along the centerline of plume by
assuming the transversal pressure gradient is negligible; and

. all physical properties of the fluid are taken constant, except for the density in the
buoyancy force term in the momentum equation (Boussinesq approximation).

Using these assumptions, the simplified governing equations are:
Continuity equation

›u

›x
þ

›v

›y
¼ 0 ðA1Þ
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Momentum equation in the x direction

r u
›u

›x
þ v

›u

›y

� �
¼ rgbDT þ m

›2u

›y 2
ðA2Þ

Energy equation

rcp u
›T

›x
þ v

›T

›y

� �
¼ k

›2T

›y 2
ðA3Þ

Fujii (1963) defined the Grashof number as follows:

Gr ¼
gbx 3u0

n 2
ðA4Þ

where

u0 ¼
Qtot

cPm
ðA5Þ

which is function of x. Also, the following variables are defined as:

j ¼ Gr 1=5 y

x
; c ¼ nGr 1=5f ðjÞ; T 2 T1 ¼ Gr21=5u0hðjÞ ðA6Þ

Equations (A1)-(A6) are combined and yield the following ODEs:

f 000 þ
3

5
ff 00 2

1

5
f

02 þ h ¼ 0 ðA7Þ

h00 þ
3

5
Prð fhÞ0 ¼ 0 ðA8Þ

where

ux

n
¼ Gr 2=5f 0;

vy

n
¼ 2j

3

5
f 2

2

5
j f 0

� �
ðA9Þ

The ODEs were numerically solved using appropriate boundary conditions.
Gebhart et al. (1970) defined the Grashof number based on the difference between the

centerline temperature of the plume (T0) and the ambient temperature (T1) as follows:

Gr ¼
gbx 3ðT0 2 T1Þ

n 2
ðA10Þ

The Grashof number is a function of the x direction and the centerline temperature difference of
the plume, which is also a function of x. The similarity parameters, stream function and
non-dimensional temperature, were defined as:

j ¼
y

x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gr

4

� �
4

s
; c ¼ 4n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gr

4

� �
4

s
f ðjÞ; hðjÞ ¼

T 2 T1

T0 2 T1
ðA11Þ

Equations (A1)-(A3) combined with equations (A10) and (A11) yield the following ODEs:

f 000 þ
12

5
ff 00 2

4

5
f

02 þ h ¼ 0 ðA12Þ

HFF
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h00 þ
12

5
Prð fhÞ0 ¼ 0 ðA13Þ

where

u ¼ 41=5 gbQ

cpI

� �2=5
x

mr

� �1=5

f 0; v ¼ 43=4 n

x
Gr 1=4 3

5
f 2

2

5
j f 0

� �
ðA14Þ

In these equations the integral I can be calculated from:

I ¼

Z 1

21

f 0h dj ðA15Þ

which, as discussed for equation (17), is a function of the Prandtl number only, and for air
(Pr ¼ 0.7) is equal to 1.245. These ODEs are also solved numerically using the appropriate
boundary conditions.
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